Definition	"Solutions which resist changes in pH when small quantities of acid or alkali are added."									
Types	Acidic Buffe	er (pH < 7)	weak acid + ethanoic acid	its sodium or potassium salt sodium ethanoate						
	Alkaline Bu	ffer (pH > 7)	weak base ammonia	+ its chloride ammonium chloride						
Biological Uses	In biological systems (saliva, stomach, and blood) it is essential that the pH stays 'constant' in order for any processes to work properly. Most enzymes work best at particular pH values.									
Blood	• the pH of b	lood is normally abo	out 7.4							
	sness and coma									
	 carbon dioxide produced by respiration can increase the acidity of blood by forming H+ ions in aqueous solution 									
	CO	$H_2(aq) + H_2O(aq)$	─────────────────────────── H +(aq) +	HCO3⁻(aq)						
	 the presence of hydrogencarbonate ions in blood removes excess H⁺ H⁺(aq) + HCO₃⁻(aq) = H₂CO₃(aq) (equivalent to CO₂ in water) 									
Other Uses	Many household and cosmetic products need to control their pH values.									
	Shampoo	Counteract the alka	alinity of the soap	e soap and prevent irritation						
	Baby lotion	Maintain a pH of al	bout 6 to prevent	bacteria multiplying						
	Others	Washing powder								
		Eye drops								
		Fizzy lemonade								

1

BUFFER SOLUTIONS - ACTION

Acid buffer It is essential to have a weak acid for an equilibrium to be present so that ions can be removed and produced. The dissociation is small and there are few ions.

 $\begin{array}{ccc} \mbox{CH}_3\mbox{COOH}(aq) & \longleftrightarrow & \mbox{CH}_3\mbox{COO}^-(aq) & + & \mbox{H}^+(aq) \\ \mbox{relative concs.} & \mbox{HIGH} & \mbox{LOW} & \mbox{LOW} \end{array}$

A strong acid can't be used as it is fully dissociated and cannot remove H⁺(aq)

 $HCl(aq) \longrightarrow Cl(aq) + H^{+}(aq)$

Adding acid Any H⁺ is removed by reacting with CH_3COO^- ions to form CH_3COOH via the equilibrium. Unfortunately, the concentration of CH_3COO^- is small and only a few H⁺ can be "mopped up". A much larger concentration of CH_3COO^- is required.

To build up the concentration of CH₃COO⁻ ions, sodium ethanoate is added.

Adding alkali Adds OH⁻ ions. Although they do not appear in the equation, they react with H⁺

 $H^+(aq) + OH^-(aq) = H_2O(aq)$

Removal of H^+ from the weak acid equilibrium means that, according to Le Chatelier's Principle, more CH₃COOH will dissociate to form ions to replace those being removed.

 $\textbf{CH}_{3}\textbf{COOH}(aq) \quad \Longleftrightarrow \quad \textbf{CH}_{3}\textbf{COO}^{-}(aq) \quad \textbf{+} \quad \textbf{H}^{+}(aq)$

As the added OH^- ions remove the H^+ from the weak acid system, the equilibrium moves to the right to produce more H^+ ions. Obviously, there must be a large concentration of undissociated acid molecules to be available.

- *Other* The concentration of a buffer solution is also important If the concentration is too low, there won't be enough CH_3COO^- to cope with the ions added.
- *Summary* For an acidic buffer solution one needs ...

large $[CH_3COOH(aq)]$ - for dissociating into $H^+(aq)$ when alkali is added large $[CH_3COO^-(aq)]$ - for removing $H^+(aq)$ as it is added

This can't exist if only acid is present so a mixture of the acid and salt is used.

The weak acid provides the equilibrium and the large $CH_3COOH(aq)$ concentration. The sodium salt provides the large $CH_3COO^-(aq)$ concentration.

... One uses a WEAK ACID + its SODIUM OR POTASSIUM SALT

CALCULATING THE pH OF AN ACIDIC BUFFER SOLUTION

Example 1 Calculate the pH of a buffer solution whose [HA] is 0.1 mol dm⁻³ and [A⁻] of 0.1 mol dm⁻³. Assume the K_a of the weak acid HA is 2 x 10⁻⁴ mol dm⁻³.

$$K_a = \frac{[H^+_{(aq)}] [A^-_{(aq)}]}{[HA_{(aq)}]}$$

re-arranging $[H^{+}_{(aq)}] = \frac{[HA_{(aq)}] K_{a}}{[A^{-}_{(aq)}]} = \frac{0.1 \times 2 \times 10^{-4}}{0.1} = 2 \times 10^{-4} \text{ mol dm}^{-3}$ $\therefore \quad pH = -\log_{10} [H^{+}_{(aq)}] = 3.699 \quad (3.7)$

Example 2 Calculate the pH when 500cm³ of 0.10 mol dm⁻³ of weak acid HX is mixed with 500cm³ of a 0.20 mol dm⁻³ solution of its salt NaX. $K_a = 4.0 \times 10^{-5}$ mol dm⁻³.

$$K_a = \frac{[H^+_{(aq)}][X^-_{(aq)}]}{[HX_{(aq)}]}$$

re-arranging	[H+ _(aq)]	=	[HX _(aq)] K _a		
			[X ⁻ _(aq)]		

The solutions have been mixed; volume is now 1 dm³ [HX] = 0.05 mol dm⁻³ [X⁻] = 0.10 mol dm⁻³

 $\therefore [H^{+}_{(aq)}] = \frac{0.05 \times 4.0 \times 10^{-5}}{0.1} = 2.0 \times 10^{-5} \text{ mol dm}^{-3}$

$$r. \quad pH = -log_{10} [H^+(aq)] = 4.699 (4.7)$$

Alkaline buffer Similar but is based on the equilibrium surrounding a weak base.

	NH 3(aq)	+	H₂O_(I) (aq)		OH ⁻ (aq)	+	NH4 ⁺ (aq)
relative concs.	HIGH				LOW		LOW
but one needs ;	a large c a large c	onc. onc	. of OH [−] (aq) of NH₄⁺(aq)	to read to read	t with any t with any	' H⁺(aq ' OH⁻() added ag) added

There is enough NH_3 to act as a source of OH^- but one needs to increase the concentration of ammonium ions by adding an ammonium salt.